The Effect of Different Coupling Agents on Nano-ZnO Materials Obtained via the Sol–Gel Process
نویسندگان
چکیده
Hybrid nanomaterials based on zinc oxide were synthesized via the sol-gel method, using different silane coupling agents: (3-glycidyloxypropyl)trimethoxysilane (GPTMS), phenyltriethoxysilane (PhTES), octyltriethoxysilane (OTES), and octadecyltriethoxysilane (ODTES). Morphological properties and the silane precursor type effect on the particle size were investigated using dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The bonding characteristics of modified ZnO materials were investigated using Fourier transform infrared spectroscopy (FTIR). The final solutions were deposited on metallic substrate (aluminum) in order to realize coatings with various wettability and roughness. The morphological studies, obtained by ESEM and TEM analysis, showed that the sizes of the ZnO nanoparticles are changed as function of silane precursor used in synthesis. The thermal stability of modified ZnO materials showed that the degradation of the alkyl groups takes place in the 300-500 °C range. Water wettability study revealed a contact angle of 142 ± 5° for the surface covered with ZnO material modified with ODTES and showed that the water contact angle increases as the alkyl chain from the silica precursor increases. These modified ZnO materials, therefore, can be easily incorporated in coatings for various applications such as anti-corrosion and anti-icing.
منابع مشابه
Fabrication and Optical Characterization of Zinc Oxide Nanoparticles Prepared via a Simple Sol-gel Method
In this research zinc oxide (ZnO) nano-crystalline powders were prepared by sol-gel method using zinc acetate. The ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis), Fourier transform infra-red (FT-IR) and energy dispersive X-ray (EDX) spectroscopy. The structure of nanoparticles was studied using XRD pattern. The c...
متن کاملSonosynthesis and characterization of nano ZnO/Montmorillonite nano clay composite via Sol-Gel method
Nano ZnO/ montmorillonite composite were prepared by sol gel method under ultrasonic irradiation from directly mixing montmorillonite nano clay into Zinc gel. The Zn(CH3COO)2.2H2O and montmorillonite nano clay was used as precursor. The zinc acetate was dissolved in DI water and, NH3 (aq) solution was dropped into the zinc solution until pH 9 consequently the zinc gel was produced. The montmori...
متن کاملSonosynthesis and characterization of nano ZnO/Montmorillonite nano clay composite via Sol-Gel method
Nano ZnO/ montmorillonite composite were prepared by sol gel method under ultrasonic irradiation from directly mixing montmorillonite nano clay into Zinc gel. The Zn(CH3COO)2.2H2O and montmorillonite nano clay was used as precursor. The zinc acetate was dissolved in DI water and, NH3 (aq) solution was dropped into the zinc solution until pH 9 consequently the zinc gel was produced. The montmori...
متن کاملStudies on sol-gel dip-coated nanostructured ZnO thin films
Nanostructured ZnO thin films were prepared by sol-gel dip coating technique. Zinc acetate and ammonium hydroxide were used as precursors and ethanol was as solvent. Ammonium hydroxide (NH4OH) solution was added drop-wise under vigorous stirring to obtain the sol-gel of different pH (varying from 6.9 to 7.2). ZnO thin films were obtained by dipping the glass substrates for few seconds and then ...
متن کاملCrystallization Kinetics of Hydroxyapatite Nano-films on Stainless Steel Through a Sol-Gel Process
This article describes the preparation and analysis of nano hydroxyapatite (HA) films on stainless steel 316L through sol-gel technique. The process started with preparation of a nitrate and phosphate sol. After aging the sol for 24 h at room temperature a SS316 substrate was dip-coated and heat-treated at 350 to 450 °C for different times in air. The coating phase and structure on subs...
متن کامل